The alternating algorithm in a uniformly convex and uniformly smooth Banach space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The alternating algorithm in a uniformly convex and uniformly smooth Banach space

Article history: Received 2 April 2014 Available online 2 July 2014 Submitted by P. Nevai

متن کامل

EXISTENCE RESULTS FOR SECOND ORDER CONVEX SWEEPING PROCESSES IN p-UNIFORMLY SMOOTH AND q-UNIFORMLY CONVEX BANACH SPACES

In a previous work the authors proved under a complex assumption on the set-valued mapping, the existence of Lipschitz solutions for second order convex sweeping processes in p-uniformly smooth and q-uniformly convex Banach spaces. In the present work we prove the same result, under a condition on the distance function to the images of the set-valued mapping. Our assumption is much simpler than...

متن کامل

Uniformly convex Banach spaces are reflexive - constructively

We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...

متن کامل

Uniformly Convex Functions on Banach Spaces

We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.

متن کامل

On iterative fixed point convergence in uniformly convex Banach space and Hilbert space

Some fixed point convergence properties are proved for compact and demicompact maps acting over closed, bounded and convex subsets of a real Hilbert space. We also show that for a generalized nonexpansive mapping in a uniformly convex Banach space the Ishikawa iterates converge to a fixed point. Finally, a convergence type result is established for multivalued contractive mappings acting on clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.06.076